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Abstract

Sufficient conditions are presented for the stabilizability and global controllability of certain natural Lagrangian systems with a
non-negative potential energy when there are ideal unilateral constraints. In the general case, the number of controls is less than the
number of degrees of freedom and the controls are bounded by preassigned quantities. Examples of globally controlled systems
with two degrees of freedom are considered in which the action of the unilateral constraints is modelled within the framework of
classical collision theory.
© 2008 Elsevier Ltd. All rights reserved.

1. The class of systems considered

The properties of stabilizability and controllability, which are understood in the traditional sense,1 are investigated
for natural Lagrangian systems. In a continuation of a previous analysis2–4 the systems

(1.1)

with a Lagrangian function

which is symmetric with respect to time reversal (t → −t), where Tr is an r-dimensional torus, are discussed. The
control u = (u1, . . ., un)T is a vector function of the time t, which is summable in any finite interval and satisfies the
constraints |ui| ≤ ai, where ai are specified numbers (i = 1, 2, . . ., n). Some of them may be zero, that is, the number
of degrees of freedom n can exceed the number of controls. For example, if ai = 0 (i = 1, 2, . . ., n, i �= j), then system
(1.1) is “controlled using a scalar input uj”

We further assume that ideal unilateral constraints

(1.2)
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are imposed on the system, where the smooth functions fi(q)(j = 1, 2, . . ., l) satisfy the conditions ∂fi/∂q �= 0 at the
points q* for which fi(q*) = 0, that is, regular surfaces serve as the boundaries of the sets (1.2) in the configurational
space M. The phase space

(1.3)

The notation (q, q̇) ∈ Tr × R2n−r implies that the numerical values of the coordinates are taken from the corre-
sponding covering space Rr × R2n − r.

We will assume that the potential energy B(q) has a lower bound, that is, B(q) ≥ 0, B(0) = 0 and the set of equilibrium
positions

will therefore be a non-empty set. Remark 1 We will further assume that the minimum value of the functions B(q) is
reached at the point q ∈ M, which does not at the one belong to two or more surfaces fi(q) = 0(i ∈ 1, 2, . . ., l).

If the separatrix surface in the space TM, the motion along which to a singular point occurs after an infinite time,
corresponds to the inverse relation u = u(q, q̇), then the surface is denoted by Ω(u(q, q̇)).

We rose the problem of finding the sufficient conditions for global controllability, that is, of the possibility, in
a finite time, of transferring object (1.1), subject to condition (1.2), from an arbitrary state (q0, q̇0) ∈ TM to any
preassigned state (qf , q̇f ) ∈ TM after a finite time using admissible controls. The distinguishing feature is exis-
tence of unilateral constraints (1.2) which implies the possibility of impacts and makes the system substantially
unsmooth.

Note that, in the neighbourhood of each surface fj(q) = 0, it is convenient to use a local description of the configuration
using the coordinate substitution proposed earlier in Ref. 5. Furthermore, the vector (s, yT), dim y = n − 1 is introduced
prior to the substitution, where s = fi(q), and no constraint is imposed on the remaining component of the configuration
vector y. If the surface s = 0 is reached when ṡ �= 0 during the motion of the system, an impact accuse, the consequences
of which have to be determined. We shall confine ourselves to cases when the determination within the framework of
classical theory of an absolutely elastic impact6 in the notation adopted earlier5

(1.4)

does not contradict the mechanical nature of the object.
The minus and plus subscripts correspond to quantities prior to and after impact, the time of which is assumed to

be negligibly small. Here, T is the kinetic energy in terms of the velocities (ṡ, ẏT ), and the vector p = ∂T/∂ẏ is the
generalized momentum of the component y on which no constraint has been imposed during impact.

It is well known7 that relations (1.4) for the systems of rigid bodies (1.1), (1.2) are only in accord with experiments
in the case of a fortunate description of an object which takes account, among other things, of information on the
configurations at the instants of the collisions. Otherwise, since, in reality, the impact reactions are simultaneously
generated both by a unilateral constraint as well as by a bilateral constraint, part of the kinetic energy may be converted
into forms which are not taken into account by the model. The impact will then no longer be absolutely elastic. For
example, a bell, which is modelled as a pendulum with a finite number of degrees of freedom, clearly appears as a system
with distributed parameters after an impact.7 In order to remain within the framework of relations (1.4) in the system of
rigid bodies with constraints (1.1), we would be obliged to make the model more complex every time depending on the
actual form of functions (1.2). In this sense, unilateral constraints cannot always be formally “superposed” on the finite
dimensional system (1.1), which has already been assumed. Within the framework of assumptions (1.4) which have
been adopted, it is therefore only necessary, henceforth to consider the class of objects in which constrained collisions
are not encountered, with the aim of preserving the independent character of relations (1.1) and (1.2). These can be, for
example, systems of points masses which are not linked together by constraining bonds and, also, other mechanisms
in which the absolute elasticity of the collisions is guaranteed.

Since the dimension of system (1.2) are arbitrary, it is not possible in general to avoid an unsmooth change of
coordinates.5 We shall only use it for the local description of the dynamics in the neighbourhood of the specific
hypersurface fi(q) = 0. For a complete description of the motions of system (1.1), (1.2), (1.4), we shall use the standard
technique of putting together the trajectories from the parts which are separated at the instants of the impacts (the
fitting method). The negligibly small durations of the impacts will be “cut from the motion picture tape of events”.
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Note that they could be left if one is synthetically modelling a viscoelastic medium with an infinite elasticity potential
in the domain fi(q) < 0.8

2. Conditions of stabilizability

Conditions of stabilizability, that is, the possibilities of transferring the system from any initial state (q0, q̇0)
into an �-neighbourhood of the point (0, 0), were proposed in Refs. 2–4 for systems on semi-invariant sets, that is,
which completely contain the phase curves which have started in them. The topic of discussion usually concerns the
stabilizability in the whole of phase space, for which the concept of a connected Lyapunov function was introduced.9

Definition 1. We shall call a single-valued function V(y) (y ∈ Tr × Rm), which is positive-definite on P ⊂ Tr × Rm

in Lyapunov’s sense (∀y ∈P : V (y) ≥ 0, V = 0 ⇒ y = 0) and continuous together with its partial derivatives, a
Lyapunov function.

We will use the notation

Definition 2. We shall say that the Lyapunov function V(y) (y ∈ Tr × Rm) is connected on P ⊂ Tr × Rm if each set
Hc(V (y)) ∩ P(c∈EV ) is connected.

Note that, when unilateral constraints (1.2) are added to system (1.1), the set on which the solutions of the systems
are determined will no longer be semi-invariant in the general case since the phase curves can encounter obstruc-
tions. Moreover, in systems (1.1), (1.2), certain functions (the potential energies, for example) can become connected
Lyapunov functions (CLF) which is solely due to constraints (1.2).

Example 1. For a point m which falls along the z axis on to the horizontal plane z = 0, the potential energy B(z) = mgz
is a CLF on P1 = {z ∈ R1:z ≥ 0}.

We will later formulate one sufficient conditions for a CLF on P = {y ∈ Tr × Rm:f(y) ≥ 0}, assuming that the set P
is connected and that all the hypersurfaces fj(y) = 0(j = 1,2, . . ., l) are regular.

We will use the notation

We will assume that the surface
∑

s, of dimension s = r + m − k, can only be an intersection of k of the hypersurfaces
fi(y) = 0(k < l) at the points of which k of the vectors gi = ∂fi/∂y are linearly independent. The Gram determinant,
constructed on these vectors at the point y ∈�s will then be positive, that is, det {γ ij}> 0, where γij = gTi gj(i, j =
1, 2 . . . , k). We will establish a correspondence between the set N(y*) of the numbers of all the hypersurfaces fi(y) = 0
to which it belongs and each point y* ∈ ∂P. We will the Gram determinant, constructed on the vectors of the gradients
gi(y*)(∀i ∈ N(y*)), by T(y*). In the case of the auxiliary function V(y) (y ∈ P), the vector b = ∂V/∂y, calculated at
the point y* ∈ ∂P, together with the k vectors gi(y*), generates another (k + 1)-th order Gram determinant, which is
subsequently denoted by �v(y*). Local coordinates �j(j = 1, 2, . . ., s) and the matrix ∂2V0/∂�2, where V0(�) = V(y), exist
in the neighbourhood of the point y* ∈ ∑

s.
It is well known (Ref. 10, p. 113) that the smooth function V(y) only has conditional extrema on the smooth surface

f1(y) = 0 at points where ∂V/∂y and ∂f1/∂y are collinear. In general, the conditional extrema of the function V(y) in
∑

s

are located at points where the k + 1 vectors b, gi are linearly dependent, that is, where �v(y) = 0. We separate out the
subset

from the set of conditional critical points of the function V(y) on ∂P and use the notation
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If 0 ∈ P0, then, by virtue of the smoothness of V(y), we obtain b(0) = 0. If, however, 0 ∈ ∂P, then the point y = 0
cannot be a critical point for V(y) (see Example 1).

Assertion 1. Suppose the Lyapunov function V(y) (y ∈ P) does not have critical points in P0 with the exception,
perhaps, of the point y = 0 and that an �0 > 0 exists such that the set �V(�), for any � < �0, consists of a finite number
of connected compact subsets. If QV(∂P)\0 consists of a finite number of isolated points at which the matrix ∂2V0/∂�2

has a negative eigenvalue, then V(y) is a CLF on P.

Proof. Consider the dynamical system

(2.1)

on P.
If 0 ∈ P0, then, along each trajectory emerging from y(0) ∈ P0 which does not intersect ∂P, we obtain

We will determine the solution of system (2.1) when f1(y(0)) = 0 using Filippov’s rule (Ref. 11, p. 42), assuming
that f1(y) = 0 is the equation of the surface of discontinuity to which the infinitely large velocity vectors �g1 (� → ∞)
are directed from the domain f1(y) < 0. Depending on the sign of the quantity e = bTg1, the motion either continues in
the domain P0 (if e ≤ 0) or in a sliding mode along the surface f1(y) = 0 (when e > 0). The sliding velocity

reduces in the limit when � → ∞ to the form

(2.2)

By virtue of equality (2.2), the derivative of the function V(y)

since bTg1 ≤ |b||g1| (the Cauchy–Bunyakovskii inequality). Here, equality is only attained in the case of codirected
vectors b and g1, that is, when y ∈ QV(∂P).

We now show that, in the case of translation (with the exception of certain trajectories which are receding without
disrupting the connectiveness of P), either an �-neighbourhood of the point y = 0 or a point of descent from the surface
f1(y) = 0 (when e ≤ 0) or a point of intersection with another surface fj(y) = 0 (j ∈ 1, 2, . . ., r) will be reached. We shall
at once carry out the arguments for the general case of translation from a point y* onto the intersection of several
hypersurfaces fi(y) = 0(∀i ∈ N(y*)) when the condition

(2.3)

is satisfied (violation of the inequalities returns the point to the surface of greatest dimension or to P0). On defining the
vector fields in the domains fi(y) < 0 in the form �igi, �i → ∞(i ∈ N(y*)), Filippov’s rule, we obtain the sliding velocity

(2.4)

where �i are the coefficients of the expansion (in the basis {gi, i ∈ N(y*)}) of the projection of the vector b onto the
subspace which is generated by this basis. By virtue of relation (2.4), the time derivative of the function V(y) is as
follows:

When �V > �, the rate of decrease in V(y(t)) is finite.
We will now consider in greater detail the case when �V, that is, a motion in the set �V(�) which (in the case of a

suitable decrease in �) separates into a finite number of connected compacta, each of which contains no more than a
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single point from QV(∂P). A min
y∈ψ(ε)

γV (y) = γε exists for each compactum. If �� > 0, then dV/dt < −�� and the point

leaves the set �V(�) after a finite time.
If �� = 0, we have a neighbourhood of an isolated point y0 ∈ QV(∂P) in which the matrix ∂2V0/∂�2 = W has a negative

eigenvalue. On choosing the local coordinates �j = yk+j (j = 1, 2, . . ., s), we obtain

where k is the number of elements in N(y0), s = r + m − k. The representation �̇ = H �̇ is found in view of the linear
independence of the vectors gi (y0) (i ∈ N(y0)) at the point y = y0. Linearization of system (2.1) in the neighbourhood
of this point generates the subsystem

where I is the unit matrix and � = c when y = y0. The fact that the matrix W has a negative eigenvalue (according to the
condition) guarantees the instability of the solution � = 0. Elimination of the set
 of trajectories entering points of the
type y = y0 from P yields the connected set P\
 in which the remaining trajectories leave the set �V(�) after a finite
time and reach an �-neighbourhood of the point y = 0. In view of the monotonicity of V(y(t)) along the solutions of
system (2.1) (which form a global focus in P\
), we obtain Hc(V(y)) ⊂ Hd(V(y)) when d > c, that is, the connectedness
of all of the sets Hc(V(y)), which it was required to do.

Example 2. The contour lines of the function

are shown in Fig. 1 and the domain R2\P0, has been hatched in; the boundary ∂P of this domain asymptotically
approaches (from above and downwards to the left) the line V = c1. The Lyapunov function V(x1, x2) is connected in
R2 but is not connected in P. The conditions of Assertion 1 are not satisfied in view of the non-compactness of the set
�V(�).

Example 3. The motions of a mathematical pendulum in the vertical plane (Fig. 2) are hindered by the unilateral
constraints R ≤ x ≤ l, where l is the length of the fibre, R is the radius of the fixed disc with its centre at the suspension,
point and � and x are the polar coordinates of the point mass. In the dimensionless variables 	 = (l − R)/l (0 < 	 < 1),
z = (x − l)/l, y = (�, z)T, the reduced potential energy V(y) = 1 − (z + 1)cos� is a CLF in P:

Here,

Fig. 1.
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Fig. 2.

The surfaces fi(y) = 0 (i = 1, 2) do not intersect. However, in each of them �(y) = gTg = 1 since g = ∂fi/∂y = (0, ±1).
The Gram determinant

is only calculated for z* = 0 (when i = 1) or z* = −	 (when i = 2), and the set �V(�) (where (z* + 1)2sin2� ≤ � � 1)
therefore consists of four connected compact neighbourhoods of the points 
 = 0 and � = � for fixed values of z* (−	
or 0). The set QV(∂P)\0 consists of the point y* = (�, −	)T at which ∂2V0/∂�2 = 	 − 1 < 0, where V0(�) = V(�, −	)
when � = �.

Remark 1. If, in system (1.1) with unilateral constraints (1.2), the potential energy B(q) is a CLF in
P = {q ∈ Tr × R:f(q) ≥ 0}, then the total energy

will be a CLF in TM (1.3).

Actually, in the notation

the dynamical system

can be considered in TM. Along its solutions, we have

that is, a monotonic asymptotic decrease in T when B = const. We connect its limit point (x10, 0) to each phase curve. In
view of the connectedness of B(x1), the continuations of these curves from (x10, 0) to (0, 0) are found (with a monotonic
decrease in B(x1)) in the subspace x2 = (when T = 0). As a result, each point (x10, x20) ∈ TM will be joined to the point
(0, 0) by a line along which the function E(x1, x2) decreases monotonically. This means, that E(q, q̇) is an CLF in TM
as required.
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Remark 2. It can be shown that the points of the conditional extrema of the function E(q, q̇) in the set ∂P × Rn

only differ from the analogous points of the function B(q) in ∂P by the formal addition of the components q̇ = 0 and,
moreover, the nature of the extrema is also repeated (with respect to the number of negative eigenvalues of the second
derivatives in the local coordinates).

For prove this, we use the notation

The new vectors ∂fi/∂y will differ from ∂fi/∂q in the addition of n null coordinates and, therefore, �(y) =�(q). It can
be shown that

(2.5)

The Gram determinant �E(q) is constructed at the point q* ∈ ∂P for the same vectors ∂fi/∂q (i ∈ N(q*)) as in the case
of �(q) but with the addition of the vector ∂E/∂q (for an arbitrary q̇) to a number of them. The momentum p = A(q∗)q̇
is calculated at the point y∗ = (q∗, q̇) as is the determinant �V(y), which is constructed for the vectors ∂V/∂y, ∂fi/∂y
(i ∈ N(y*)).

If �V(y) = 0, then, by virtue of the condition �V(q) �= 0, we obtain p = 0 from equality (2.5) (and this means that
q̇ = 0, ∂E/∂q = ∂P × Rn and�E(q) = 0, that is�B(q) = 0). Consequently, the conditional critical points of the function
V(y) in ∂P × Rn will be the same as in the case of the function B(q) in ∂P (with the addition of n null coordinates in view
of the equality q̇ = 0). The type of these points are also identical (with respect to the number of negative eigenvalues
of the second derivatives in the local coordinates y1 = (�, q̇) when q̇ = 0,q∗ ∈ ∂P), since

as required.

Assertion 2. Suppose that, in system (1.1) with the unilateral constraints (1.2) (and conditions (1.4) in the case of
collisions), the potential B(q) is a CLF in P and all the sets Hc(B(q)) (c ∈ EB) are compact. Then, if, during free motion,
the system does not admit of the particular solution q̇j ≡ 0 (excluding equilibrium positions), then it is stabilizable
with respect to an input uj, (j ∈ 1, 2, . . ., n) in the set TM\�(uj).

Proof. According to Remark 1, the total energy E(q, q̇) is a CLF in TM. The sets Hc(E(q, q̇)) are compact in TM by
virtue of the boundedness of |q̇| when q̇TA(q)q̇/2 ≤ c. We now choose a smooth function uj(q, q̇) such that

When q(0) ∈ P0, by virtue of system (1.1) we obtain

(2.6)

that is, E(t) ≤ E(0) = c and, in the compactum Hc(E(q, q̇)), the solutions of system (1.1) are continuable for any time
interval while q(t) ∈ P0. When the set ∂P is reached (for example, the surface f1(q) = 0 when t = t1), the subsequent
motion depends on the quantity ṡ− = ṡ(t1 − 0), where s = f1(q). If s− �= 0, an impact occurs after which, by virtue of
relations (1.4), T (q, q̇), B(q), and this also means E(q, q̇), turn out to be continuous functions. We note that, in the
case of a multiple impact (when fj(q) = 0, fi(q) = 0, i �= j simultaneously), the three above-mentioned functions have no
discontinuities, that is, condition (2.6) is not violated. If ṡ− = 0, the motion will occur by virtue of the equations with
a Lagrange multiplier

(2.7)

while the scalar quantity which expresses the reaction force of the constraint is positive.
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At the same time,

and, in the general case of motion along the intersection of several hypersurfaces fi(q) = 0, we obtain (
∑
λi∂fi/∂q)T q̇ =

0, and condition (2.6) is therefore also not violated.
If Ω = Ω(uj(q, q̇)), then dim�< 2n and the domain TM\�(uj) will be open and everywhere dense in TM (in view

of the non-compactness of TM and the continuity of E(q, q̇)). There are no complete trajectories of the system for the
set dE/dt = 0 as uj = 0 only when q̇j = 0 and the particular solution q̇j ≡ 0 (when u ≡ 0) is missing according to the
condition. As a result, the conditions of the Barbashin–Krasovskii theorem, modified for Tr × R2n−r,9 are satisfied,
that is, the asymptotic stability of the zero solution of system (1.1) with feedback uj(q, q̇) holds for TM\�(uj). Hence,
system (1.1) is stabilized with respect to an input uj (j ∈ 1, 2, . . ., n) on the set TM\�(uj) which it was required to
demonstrate.

3. Conditions for global controllability

In order to establish the controllability properties of natural Lagrangian systems, use has been made of their
stabilizability to an equilibrium state (or to a certain steady motion), local controllability in the neighbourhood of such
a system and the symmetry of the equations of motion with respect to time reversal

(3.1)

when the possibility of motion “in reverse time”

follows from the existence of a controllable trajectory

The use of appropriate “attainable curves” will be a further generalization of this approach. This enables as, in
particular, to give up the requirements of local null-controllability,1 which is absent in the general case when 0 ∈ ∂P.
We shall rely on the time reversibility of the trajectories of system (1.1), (1.2), (1.4), which are joined by fitting
procedures. In the case of such an object, he existence of null-controllability also guarantees global controllability, that
is, the possibility of transfer from any state (q0, q̇0) to any required state (qf , q̇f ) after a finite time under the permissible
control u(t). In fact, the feasibility of the transition (qf ,−q̇f ) → (0, 0) implies (by virtue of symmetry condition (3.1))
the possibility of the transition (0, 0) → (qf , q̇f ), and the motion (q0, q̇0) → (0, 0) → (qf , q̇f ) therefore exists for
any (q0, q̇0) and (qf , q̇f ).

Definition 3. We shall call a closed curve corresponding to a periodic motion (with a finite period) and containing
a globally accessible point, that is, a point (q∗, q̇∗) ∈ TM into which the system can be transferred by an admissible
control after a finite time from any other point of phase space, a globally accessible curve in the phase space of system
(1.1), (1.2), (1.4).

Assertion 3. The necessary and sufficient condition for the global controllability of the natural Lagrangian system
(1.1), (1.2), (1.4) is the existence of a globally accessible curve containing both a certain point (q∗, q̇∗) and the point
(q∗,−q̇∗) which is symmetric to it.

Proof. The necessity is verified, for example, by the choice of the accessible periodic motion q ≡ 0, q̇ ≡ 0 since its
null-controllability follows from the global controllability of the system.

The sufficiency follows from the existence (according to Definition 3) of the motion (q0, q̇0) → (q∗, q̇∗) from any
initial point (q0, q̇0). If (0, 0) is taken as such a point, then, by virtue of condition (3.1)), the symmetric transition
(q∗,−q̇∗)(0, 0) is found together with the transition (0, 0)(q∗,−q̇∗). As a result, the stepwise motion
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will be guaranteed, which means the null-controllability of system (1.1), (1.2), (1.4) and, consequently, also its global
controllability, as it was required to prove.

Corollary. For the global controllability of the natural Lagrangian system (1.1), (1.2), (1.4), it is necessary and
sufficient that a globally accessible curve exist containing a point of the form (q*, 0).

Note that, in the analysis of controllability, two cases are qualitatively distinguished (depending on the location of
the rest point q = 0 with respect to the set (1.2)): 1) the case f(0) > Q when unilateral constraints have not been applied
in the equilibrium state; then, for global controllability, stabilizability and local controllability are sufficient, and it is
sufficient1 to reveal the latter in the linear approximation on which the existence of constraints (1.2) has no effect; 2)
the case when f1(0) = 0 when equilibrium is attained due to a unilateral constraint (which we assume to be the first);
here, the linear approximation cannot be used in the neighbourhood of the state of rest in view of the discontinuity of
the right-hand side of the differential equation.

We will now consider the second case in greater detail assuming (in accordance with Remark 1) that it is impossible
for the point q = 0 to belong at once to the intersection of two or more hyperplanes fi(q) = 0 (otherwise we would be
able to rely on the special change of variables in Ref. 5 which is used later). For the proof of global controllability, we
shall seek globally accessible curves and show, for example, that these curves are explicitly encountered in systems
with two degrees of freedom.

4. Globally controllable systems with two degrees of freedom

We now consider system (1.1), (1.2), (1.4) when n = 2 under just a single control u1. We will assume that this control
allowed the system, during the stabilization process, to be brought from unstable equilibrium states (and from the set
�), that is, stabilizability in TM was ensured as a result. We will also assume that, in the �-neighbourhood of the point
(0, 0) ∈ TM, which has already been reached, it is possible by means of an appropriate change of coordinates (s = f1(q),
for example) to transfer to the configuration q = (s, y)T for which the first inequality of (1.2) has the form s ≥ 0 and the
remaining inequalities do not constrain the motions, that is, for small |q|, |q̇|, only impacts on the surface s = 0 prove
to be possible. Finally, we will assume that the canonical structure12 of the kinetic energy

is attained by a suitable choice of the y coordinate.
Denoting the potential energy by B(s, y), we obtain the equations of motion

The coefficients r = r(s, y), � = �(s, y) accompanying the control appeared as a consequence of the transition from
the old configuration to the new one.

In the �-neighbourhood of the equilibrium state being considered

(4.1)

we obtain the equations without kinematic constraints

(4.2)

by means of the unsmooth substitution5 s = |x|. At the same time the equality ∂B/∂y = 0 is satisfied in the state (4.1)
since no constraint is imposed on y.
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Next, we use the notation

(4.3)

and, depending on the value of 
(0), we shall speak of an equilibrium with a positive reaction (
(0) > 0) or a null
reaction (
(0) = 0) of the unilateral constraint.

We initially consider the first case. If the magnitude of 
(0) is positive and finite, then, in the domain of the motions
being considered, it exceeds both the values of |q|, |q̇||∂B/∂y| as well as the control resource a, which is taken (according
to the condition) to be as small as desired.

Remark 3. The existence of a value �0 > 0 such that, for any � > �0, �(q) �= 0 (∀q ∈ H�(B(q)) is satisfied is a necessary
condition for the controllability of system (4.2) when 0 < |ra| < 
(0). Actually, the state (4.1) will otherwise be an
invariant set which it is impossible to leave in the case of any admissible control whatsoever and, since the expressions
in brackets is negative in the first equation of (4.2), a “translation” state x ≡ 0 arises.

We next assume that the condition of Remark 3 is satisfied and calculate the values

in the compactum H�(B(q)).
In the �-neighbourhood of the point (0, 0) ∈ TM, we represent the equation in the form

(4.4)

and, in view of the smallness of |q|, |q̇|, the inequalities

will be ensured if w(t) is chosen from the condition |w| ≤ a1, a1 = a�0/(2h0).
Substituting expression (4.4) into system (4.2), we obtain

(4.5)

When the conditions

(4.6)

are satisfied, we have G = 0 and, by choosing an admissible control w(t), it is possible to transfer system (4.5) to the
state (4.6) for which the second equation of (4.5) is integrated in the form

(4.7)

When 
(0) > 0, the integral (4.7) describes natural oscillations about the constraint and, in the phase plane (x, ẋ), it is
depicted by a closed curve which is symmetrical about the centre. The curve (4.6), (4.7) proves to be globally accessible
if the value c1 which is specified in advance is successfully reached. By virtue of Eq. (5.5), the time derivative of the
function H(x, ẋ) has the form

(4.8)

In order to obtain the required value H = c1 (in the �-neighbourhood of the point (0, 0) ∈ TM in the case of the state
(4.6), (4.7)), it is possible initially to transfer the system (by means of a stabilizing control) into the domain of sufficiently
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small values of H < c1, at the same time reaching the state (4.6) (with the choice of w(t)) and then to use the following
stepwise procedure of monotonically increasing H. In the next stage, T = 0 is set at the instant of time when x = 0, ẋ =√

2H . In the interval t ∈ [0, 
] (where 
 is the time of the motion in the domainx ≥ 0, ẋ ≥ 0), we specify the preset control

(4.9)

Condition (4.6) is satisfied at the beginning and end of such a manoeuvre and the resulting increment in the function
H will depend on a2 in the form

(4.10)

The principal part of the increment (4.10) can be obtained using an asymptotic expansion, introducing the small
parameter � = 2H(0) and recalculating the scales of the variables and the time using the formulae

(4.11)

Then, omitting the prime, we represent

(4.12)

and we write the zeroth approximation for Eqs. (4.5) and (4.8) as follows:

(4.13)

On finding specific functions x0 ≥ 0, ẋ0 ≥ 0 in the segment t ∈ [0, t1](t1 = τ/
√

2H0) from the first equation of
(4.13), we estimate (using the known w0(t), y(t), ẏ(t)) the value of the integral (4.10) in the form

(4.14)

Since the function H1(t) is calculated in quadratures, the quantity

(4.15)

is determined explicitly. As H increases, the parameter � increases and, therefore, if the value of � is positive and
finite, then, by repeating the strategy (4.9) many times, it is possible to attain the specified (sufficiently small) value of
H = c1 after a finite number of steps. In other words, in the phase space TM the curve (4.6), (4.7) proves to be globally
accessible and contains the point q̇ = 0. Then, according to the corollary from Assertion 3, the following sufficient
condition of controllability will hold.

Remark 4. Suppose the system (1.1), (1.2), (1.4) with two degrees of freedom is stabilized and, in the equilibrium
state (4.1), the reaction of the unilateral constraint (4.3) is positive. If, for the equations in the form of (4.5), the quantity
�, obtained in the case of the motion from the state (4.6) with the control (4.9), is positive and finite, then the system
is globally controllable.

Example 4. We will now consider the mathematical pendulum with the kinematic constraints from Example 3 (Fig. 2)
as the controlled system. Suppose the control force u (|u| ≤ a, a is a given quantity) is applied to the pendulum at an
acute angle � to the vertical (the model of relative motion for a varying acceleration of the suspension point parallel
to an inclined line). In the notation q = (�, z)T, the system has the potential B(q) = 1 − (z + 1)cos� which is a CLF (see
Example 3) and a total energy
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Moreover, all of the sets Hc(B(q)) (c ∈ E) are compact in view of the boundedness of � and z.
By virtue of the equations of motion

(4.16)

the time derivative of E(q, q̇) will be

When u ≡ 0, the expression in square brackets is only equal to zero for equilibrium states (since free motion of the
point along the line

inclined at an angle � �= 90◦ to the horizontal is impossible and, in the case of motion along the constraint when ż = 0,
we have ϕ̇ �= 0). The set �(u) consists of the trajectories entering the point

from which the object can evolve by means of an adrmissible control while on a lower energy level. By virtue of
Assertion 2, the system is therefore stabilized in TM with respect to an input u, that is, it can be transferred from any
state (q0, q̇0) to the �-neighbourhood of the point (0, 0). In this neighbourhood, a continuous description of the motion5

is achieved by the substitution z = |x|, since the kinetic energy already has a canonical structure. Since ∂B/∂|x|, then

(0) = 1, that is, the reaction of the constraint is positive in the equilibrium state. The vertical motion of the pendulum
with impacts at the instants when the fibre is taut and the conservation law

corresponds to condition (4.6).
In the phase space TM, this will be a globally accessible curve since, after a finite number of cycles of control (4.9),

the preassigned value of c1 can be attained.
It can be shown that, in the asymptotic expansion procedure (4.12), the estimate �H(a2) in the first approximation

is characterized by the quantity (4.15) in the form

(4.17)

Actually, here, Eq. (4.5) acquires the form

After recalculation of the scales (4.11) and the asymptotic expansion (4.12), we obtain the solution

for the zeroth approximation of (4.13) in the positive quadrant of the phase plane (x, ẋ).
For the same time interval, the integrable component

is separated out in the equation of the first order approximation
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Fig. 3.

whereN = (1 − x0)(ϕ + ẋ0ϕ̇) − ẋ2
0ϕ̇ (when account is taken of the equalities ϕ̈ = a2w0, ẍ0 = −1). It therefore follows

from the expression for H1 (4.14) that

Since ϕ(1) = ϕ̇(1) = 0, we have N (1) = 0. Moreover, we obtain by direct integration

whence, in the notation (4.15), we have equality (4.17).
By virtue of Remark 4, the system (Fig. 2) is globally controllable, that is, it can be transferred after a finite time by

a bounded control |u| ≤ a (where the magnitude of a is specified and can be as small as desired) from any initial state
to any required state (xf , ẋf , ϕf , ϕ̇f ) when there are unilateral constraints.

Example 5. The system (Fig. 3) consists of two bodies of negligibly small dimensions with masses m1 and m2. Fastened
by a spring, they move translationally and rectilinearly along an inclined plane without friction. The coordinate q1 of
the first body is measured from the fixed obstacle. The length of the spring in the unstressed state is equal to l and its
stiffness c satisfies the condition

that is, the bodies do not come into contact in the equilibrium state (when q1 = 0) The coordinate q2 of the body with
mass m2 is measured such that q2 + d is the distance between the bodies. In view of the constraints q1 ≥ 0, q2 + d ≥ 0,
impacts (which are assumed to be absolutely elastic) between the bodies and of the body m1 on the obstacle are possible.
An external control force u is applied to the body with mass m2, |u| ≤ a (where a is a specified quantity and can be as
small as be desired). Introducing the dimensionless variables and the dimensionless time

we obtain, omitting the prime, the reduced Lagrang function

in the coordinates q = (q1, q2)T, where the potential energy

is a Lyapunov function in p = {q ∈ R2:q1 ≥ 0, q2 + d ≥ 0}. The sets Hc(B(q)) in R2 (which are out off from the right
angle P by parabolae with a common axis q2 = 0) are compact and the function B(q) is a CLF in P. By virtue of the
equations of motion

(4.18)
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with the constraints

(4.19)

the time derivative of the total energy E(q, q̇) will be dE/dt = u(q̇1 + q̇2) and, moreover, in the free motion (u ≡ 0),
the particular solution q̇1 + q̇2 ≡ 0 is only possible in the equilibrium state q ≡ 0. According to Assertion 2, system
(4.18), (4.19) can be successfully transferred after a finite time by means of an admissible control from any initial state
(q0, q̇) to the �-neighbourhood of the point (0, 0). In this neighbourhood, we next make the substitution5

where ẏ = ∂T/∂q̇2 (the momentum of the “non-collision” coordinate) such that the function ẏ(t) is continuous during
collisions of the body of mass m1 with the obstacle, but collisions between the bodies with masses m1 and m2 are now
impossible in view of the smallness of x and y. In the equilibrium state (x = 0, y = 0), the reaction of unilateral constraint
(4.3)

In the domain of motions being considered, Eq. (4.5) take the form

since, here, r = 0, � = 1, h = 1/�, G = 0. With condition (4.6), the integral (4.7)

describes the process of the periodic collisions of the body of mass m1 with the obstacle during which the body of mass
m2 is maintained at rest by the component u2 of the control. A globally accessible curve corresponds to this motion in
the phase space TM since, after several cycles of control (4.9), the preassigned value of c1 can be attained. Actually,
by solving Eq. (4.13) in the domain x0 ≥ 0, ẋ0 ≥ 0, we obtain estimate (4.15) in the form

where J0(t) = �2y(t) > 0 (when t ∈ ]0, 
]) and, therefore, �> 0.
According to Remark 4, system (4.18), (4.19) (Fig. 3) is globally controllable in the case of a control resource a,

which can be as small as desired.
Note that local null-controllability is missing in Examples 4 and 5 since, when x(0) = ẋ(0) = 0 and in the case of

small y, a sliding process x ≡ 0 arises, which it is impossible to leave without significant “swinging” of the system.

5. A unilateral constraint with a null reaction at equilibrium

We will now consider the case when 
(0) = 0 which, by virtue of (4.3), corresponds to a null reaction of the unilateral
constraint at equilibrium. Again, system (1.1), (1.2), (1.4) with two degrees of freedom is the topic of discussion which,
as a result of the stabilization, is brought into the �-neighbourhood of the point (0, 0) ∈ TM. We will investigate the
equations of motion (4.2) in this neighbourhood, assuming in the particular case that r > 0. This assumption narrows
down the range of systems being discussed but it enables us to indicate explicitly the globally accessible curve for
them. As before, � �= 0.

In view of the smallness of the quantities |q|, |q̇| in the domain of motion being considered, the factor in front of
signx in the first equation of (4.2) will have a sign which is determined by the term ru. Within the framework of the
preassigned constraint |u| ≤ a, the control can be selected in the form

(5.1)
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thereby reducing the first equation of (4.2) to the form

(5.2)

We initially transfer system (5.2) the state

(5.3)

using a suitable control u3 = wsignx/(�r), choosing the function w(t) from the accessible domain in accordance with
the equation ẍ = w. The motion with the initial conditions (5.3) can then be continued into the sliding process x(t) ≡ 0
if the inequality ru3 < 0 is ensured, for example, by means of the control

(5.4)

The numbers � and a5 are chosen from the third condition of (5.1) and exceed the magnitudes of |q|, |q̇|. The specific
value of � and the function u5(t) will be determined from the objectives of the control by the state y, ẏ when x(t) ≡ 0.
Substituting relations (5.1), (5.3) and (5.4) into the second equation of (4.2), we obtain

(5.5)

where all of the functions

(5.6)

are calculated when x ≡ 0.

Remark 5. It can be shown that, when the conditions

(5.7)

are satisfied, system (5.5), in the domain of motions being considered, can be transferred after a finite time to a certain
equilibrium state

(5.8)

where the value of y* is determined by the specification of the sufficiently small quantity �.

In fact, the function F4(ẏ), defined by the last equality of (5.6), satisfies the condition F4(0) = 0 by virtue of the
assumptions which have been made concerning the null values of the reaction of the constraint in the equilibrium
state. In view of condition (5.7), the function F4(y) is monotonic, and this means that it has an inverse which takes, for
example, the value

(5.9)

in the case of the magnitude of � which is selected later. When u5 = 0, system (5.5) then has an equilibrium state (5.8)
and is locally controllable in its neighbourhood since the linear approximation

is obtained in the variables � = y − y*.
It remains to show that system (5.5) can be stabilized to the state (5.8). In order to do this, we use the Lyapunov

function

Just as the relations
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are satisfied when y = y* by virtue of the equalities (5.9) and (5.7), so the inequality B2(y) ≥ B2(y*) holds and this means
that the Lyapunov function has the form

By virtue of Eq. (5.5), the time derivative of the function E2(y, ẏ)

and, when account is taken of the first relation of (5.7), it will satisfy the inequality dE2/dt ≤ 0 if we take, for example,

(5.10)

Here, F2(y) �= 0, and the particular solution ẏ ≡ 0 accompanying the free motion (u5 ≡ 0) is only possible for y = y*
by virtue of the uniqueness of the equilibrium state. Finally, if we take the number � is advance (and, also, the value
of y* calculated by virtue of equality (5.9)) to be sufficiently small, then the compactness of the sets Hc(B3(�)) will be
guaranteed in view of the homeomorphism of these sets with their quadratic approximations

By virtue of the Barbashin - Krasovskii theorem, the above properties ensure the asymptotic stability of solution
(5.8) with control (5.10), which it was required to prove.

Remark 6. Suppose system (1.1), (1.2), (1.4) with two degrees of freedom is stabilizable and, in the equilibrium state,
the reaction of unilateral constraint (4.3) is equal to zero. If the condition r > 0 is satisfied for the equations in the form
of (4.2) and the functions defined in the form (5.6) satisfy condition (5.7), then the system is globally controllable.

Actually, the system then has a globally accessible curve (5.3), (5.8) which, according to the corollary from Assertion
3, means global controllability.

Example 6. Two point masses with masses m1 and m2 (small balls within a smooth tube) move in a gravitational
field in the vertical plane xOy along an infinite curve which has the form of a catenary y = l ch(x/l).

A control force u, which is collinear with the velocity, is applied to the point m1, and |u ≤ a, where a is a specified
number. The curved coordinates q1 (of the first point) and q2 (of the second point) are measured from the lower
equilibrium position. In view of the constraint q1 ≥ q2, collisions between the balls are possible which we assume to
be absolutely elastic. In the dimensionless variables and dimensionless time

we obtain (omitting the prime) the reduced Lagrange function

The potential energy

(5.11)

is a connected Lyapunov function in P = {q ∈ R2:q1 − q2 ≥ 0} since the conditions of Assertion 1 are satisfied: here,
QB(∂P)\0 = ∅ and the set �v(ε) is the interval [−c0, c0], c0 =

√
2ε/[(1 + μ)2 − 2ε]. In the equations of motion

(5.12)
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interference of the variable is only achieved by means of impacts. The sets Hc(B(q)) are compact and, in the case of
the free motion (u ≡ 0), the system does not allow of the particular solution q̇1 ≡ 0 (apart from the equilibrium state
q ≡ 0), since there are no complete trajectories q2(t) in the domain q2 ≤ 0, apart from q2 ≡ 0. System (5.12) is therefore
stabilizable with respect to an input u (by virtue of Assertion 2).

In the �-neighbourhood of the point (0, 0), we change to the variables5

where the momentum ẏ = ∂T/∂q̇2 is calculated after substituting q̇1 = ṡ+ q̇2 into the expression for T. The kinetic
energy acquires a canonical structure with the coefficients � = �/(1 + �).

The unsmooth substitution5

and the choice of the control in the form of (5.1) leads to Eqs. (5.2) and (5.5) where r = 1, � = 1 and ∂h/∂|x| ≡ 0, and
the potential energy B(|x|, y) is obtained by substituting the expressions

into equality (5.11). As a result, the functions

calculated according to equalities (5.6), satisfy conditions (5.7).
By virtue of Remark 6, the system consisting of two balls in a tube which has been considered is globally controllable,

that is, after a finite time it can be transferred, in the space (q, q̇) (when the condition q1 − q2 ≥ 0 is satisfied), from
any initial state into any required state by an admissible control |u| ≤ a, where a is a specified number.

Finally, we note that question of stability and control in mechanical systems with unilateral constraints have attracted
many investigators in recent years.13,14
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